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The full symmetry group of C4C8(R) nanotubes are investigated. We introduce the nanotube graphs as metric spaces and 
consider their isometries to compute their symmetry groups. It is shown that the symmetry group of a chiral nanotube with 
chiral vector c, is isomorphic to Gc =< x, y, z | x

n
 = z

2
 = (zx)

2
 = (yz)

2
 = 1, xy = yx, o(y) = ∞ >.  
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1. Introduction 
 

Carbon nanotubes, which are multi-walled structures 

of pure carbon, were discovered in 1991 [1]. They show 

remarkable mechanical properties and extensive 

experimental and theoretical investigations have been 

carried out on them [2–4]. Their mechanical characteristics 

clearly predestinate them for advanced composites. A 

single-wall carbon nanotube is a cylindrical structure with 

a diameter of a few nanometres; it is periodic along its axis 

and can be visualized as a rolled-up honeycomb lattice. 

Nanotubes are attractive subjects for study in solid-state 

physics due to their potential applications in 

nanotechnology. Their symmetry is important in 

theoretical investigations and has been investigated (see 

[5]-[10]). The high symmetry of carbon nanotubes has 

facilitated the theoretical investigation of the physical 

phenomena occurring in these materials. 

A C4C8 net is a trivalent decoration made by 

alternating squares C4 and octagons C8. It can cover either 

a cylinder or a torus. Such a covering can be derived from 

a square net by the leapfrog operation [11]. Optimized 

C4C8 net covering a nanotube is illustrated in Figure 2. 

Such nanotubes could appear by successive low energy 

Stone- Wales [12] edge flipping in polyhex nanotubes 

[11]. 

Because the relation between the carbon atoms and 

the symmetry operations is one-to-one, the nanotubes can 

be viewed as a realization of the line groups. In order to 

find the symmetry groups of carbon nanotubes, the 

symmetry operations of grapheme are considered. Those 

that are preserved when the graphene sheet is rolled into a 

cylinder form the nanotube symmetry group. 

The full symmetry group of square C4C8 nanotubes, 

C4C8(S), were computed in [13] by introducing a 

mathematical model. In this paper we consider the rhomb 

C4C8 nanotubes, C4C8(R), and we compute their full 

symmetry groups. 

 

 

2. Main results and discussion 
 

The cylindrical portions of the tubules consist of a 

single C4C8(R) lattice that is shaped to form the cylinder. 

It is convenient to specify a general C4C8(R) nanotube in 

terms of the tubule diameter d, and the chiral angle θ. The 

unit cell is spanned by two basis vectors a1 and a2 with 

same length a1 = a2 = a0 which form an angle of π/2. In 

C4C8(R) nanotubes, the lattice is rolled up in such a way 

that a lattice vector c = n1a1+n2a2 becomes the 

circumference of the tube. This circumferential vector c, 

which is denoted by (n1, n2), is called chiral vector and 

uniquely defines a particular tube. 

Now we present the lattice C4C8(R) nanotube as a 

metric space. Let us consider the vectors  

 

).1,0(),2/2,2/2(
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Put a1 = e1−e2−e3 and a2 = e2 −e3−e4 as shown in Fig. 1. 

 

 

 
 

Fig. 1. Two dimensional lattice of C4C8(R) Nanotube. 
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is the C4C8(R) lattice. Instead of the basis {a1,a2}, we have 

the possibility to use vectors e1,e2,e3 and e4.  

Theorem 1.  There is a bijection ψ:ℓ→Γ, 

 

 ψ(x)=x1e1+x2e2+x3e3+x4e4. from the set   
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to the set Γ of all vertices of C4C8(R) lattice. 

 

Proof. It is clear that ψ is well-defined. We show that 

this map is 1-1 and onto. Let ψ(x)=ψ(y). By considering 

the vectors ei, we have we 

2/)(22/)(2 321321 yyyyyy   and 

432432 2/)(22/)(2 yyyxxx  . So  

2/))((2 323211 yyxxyx   , 

2/))((2 323244 yyxxyx  . 

 

But the coordinates of x and y are integers, therefore 

x1=y1, x4=y4, x2+x3=y2+y3 and x2-x3=y2-y3.  Consequently 

we have x=y. Therefore ψ is 1-1.  

Now let )(TVv  . Without loss of generality, let 

2Lv . Since we have ψ(n,m-n+1,-m-n,-m)=v  and it is 

easy to check that (n,m-n+1,-m-n,-m) is an element of  . 

The subset ℓ of Z
4
 becomes in this way a mathematical 

model for the vertex set of C4C8(R) nanotubes. It is easy to 

check that 
4
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The mapping d: ℓ×ℓ → N where  

 


4

1
||),(

i ii yxyxd  is the L1-norm and so is a 

distance function on ℓ, moreover x is a k-neighbor of y if 

d(x, y) = k. 

The nearest neighbors of x=(x1,x2,x3,x4) are 

 

x
1
=x+ε1(x)f1+ ε4(x)f4, x

2
=x+ ε2(x)f2, and x

3
=x+ ε3(x)f3 

 

where ε2(x)=(-1)
x
1
+x

2
+x
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x

1
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f1=(1,0,0,0),f2=(0,1,0,0),f3=(0,0,1,0), f4=(0,0,0,1) and χA is 

the characteristic function on the set A which has value 1 

on A and 0 outside of A. 

The graph ζ = (ℓ, ξ), where 

ξ = {{x, y} | x, yℓ, d(x, y) = 1} = {{x, x
i
} | x  ℓ, i 

{1, 2, 3}} can be associated to the metric space (ℓ, d) in 

a natural way where x
1
,x

2
,x

3
 are the nearest neighbours            

of x. 

An isometry of the metric space (M, d) is a bijection           

f : M → M such that d(x, y) = d(f(x), f(y)), for all x, 

yM. It is easy to see that the composition of two 

isometries is again an isometry and so the set of all 

isometries of a metric space is a group with the 

composition of isometries. A graph-automorphism of 

graph G is a bijection that preserve the edges. Any 

isometry is a graph-automorphism. 

 

Lemma 1.  Transformations σ, τ, ρa:ℓ→ℓ, where 
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where x=(x1,x2,x3,x4), are isometries of the metric space 

(ℓ,d) for any aℓ. 

Proof.  It is easy to check that σ, τ, ρa are well-defined 

bijections and preserve the distance. 

Now we are ready to give the symmetry group of 

C4C8(R) lattice using the isometries of metric space (ℓ, d).  

Theorem 2. Let G be the symmetry group of the 

C4C8(R) lattice. Then 

G =< σ, τ, ρ | σ
2
 = τ 

2
 = ρ

2
 = (ρτστ )

2
 = (στ )

4
 =           

1, ρσ ≠σρ, ρτ≠τρ > where ρ = ρ(1,0,0,0), σ and τ are as 

defined in Lemma 1. 

Proof.  The group G coincides with the group of all 

the isometries of the metric space (ℓ, d). The 

transformations σ, τ and ρ are isometries of the metric 

space (ℓ, d). The origin point O = (0, 0, 0, 0) can be 

transformed into an arbitrary point of ℓ by composing 

these transformations. It is easy to check that στ, τ, ρτ are 

corresponding to the fourfold rotation, vertical mirror 

plane, and (I|01). The relations between generators of 

group can be easily obtained. 

Let H be the subgroup of translations. Then 

 

H =< a, b | ab = ba, o(a) = o(b) = ∞ > = ZZ 

 

where a = ρ(1,−1,−1,0) and b = ρ(0,1,−1,−1). 

Now we describe the C4C8(R) nanotubes using our 

model as follows. 

An C4C8(R) nanotube can be visualized as the 

structure obtained by rolling a C4C8(R) lattice such that the 

endpoints of a translation vector c are folded one onto the 

other (see Fig. 1). The vector c is the chirality of the 

tubule. In our model, an C4C8(R) nanotube is described by 

the element c = (c1, c2, c3, c4) of translations. Let c be a 

fixed translation. The relation x ~y ↔ x − y Zc is an 

equivalence relation on ℓ. The equivalence class 

corresponding to xℓ is [x] = x + Zc = {x + kc | k Z}.  
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It is easy to check that ε1(c) = ε2(c) = ε3(c) = 1, ε4(c) = 0, 

and for any x ℓ we have εi(x + kc) = εi(x) for i = 1, 2, 3, 

4 and kZ. Thus if y   [x] then y
i   [x

i
] for i = 1, 2, 3. If 

we define [x]
i
 = [x

i
] and consider the graph ζc = (ℓc, ξc), 

where 

ℓc = {[x] Z
4
/Zc | x ℓ} 

ξc = {{[x], [x]
i
} | [x] ℓc} 

 

the set ℓc can be used as a mathematical model for an 

C4C8(R) nanotube with chiral vector c. 

A symmetry transformation of the C4C8(R) lattice g : 

ℓ → ℓ defines the symmetry transformation gc : ℓc → ℓc, 

where gc([x]) = [g(x)] of the C4C8(R) nanotube ℓc if [x] = 

[y] then [g(x)] = [g(y)], for every x, yℓ. 

 

Theorem 3.  For any w ℓ, the transformation 

gw : ℓc → ℓc ;gw[x] = [ρw(x)] is a graph-automorphism of 

ℓc. 

Proof.  Let [x] = [y]. Since x − yZc if and only if 

ρw(x) − ρw(y)Zc the transformation gw is well-defined 

and preserves the adjacency. 

On can remark that gw([x]
i
) = (gw[x])

i
 for all xℓ and 

i {1, 2, 3}. 

Now we are ready to compute the full symmetry group of 

C4C8(R) nanotubes using our model. 

Let n = gcd{c1, c2, c3, c4} and c′ = c/n. The 

transformation gc′ represents a rotation of angle 2π/n of the 

nanotube with respect to its axis. Since 

(c2−c3−c4)c1+(−c1+2c3+c4)c2+(c1−2c2+c4)c3 +(c1−c2−c3)c4 

= 0, the vector a = (c2−c3−c4,−c1+2c3+c4, c1−2c2+c4, 

c1−c2−c3) is orthogonal to c, and the corresponding 

transformation ga is a pure translation, that is, a translation 

in the direction of the nanotube symmetry axis. The vector 

t =a/N where N = gcd{c2−c3−c4,−c1+2c3+c4, c1−2c2+c4, 

c1−c2− c3}= 3 gcd{−c4, c3,−c2, c1} = 3n, defines the 

shortest pure translation of ℓc. 

Let x=(x1,x2,x3,x4)T1 and y=(y1,y2,y3,y4) T1. Then 

one can see that < x, y >= (3+2√2)(x1y1 +x4y4) where < x, 

y > is the usual scalar product of x and y. 

It is easy to check that ||t||=||c||/n where ||c||
2
= 3c1

2 

+√2c2
2
+√2c3

2
+3c4

2
. Hence

 
the number q of lattice units in 

the nanotube unit cell is q = (c1
2
++c4

2
)/n. 

For any x=(x1, x2, x3, x4) T1, the projections of x in 

c and t directions can be written as 

 

<x,c>c/||c||
2
=(x1c1/n+x4c4/n)c/qZc/q, 

<x,t>t/||t||
2
=(-x1c4+x4c1)t/q’Zt/q

’
, 

 

where q
’
 = q/n. 

Theorem 4. Let Gc be the symmetry group of chiral 

infinite C4C8(R) nanotube, x = gc′ , y = gw and z = g(1,0,0,0) 

where wT1 is the shortest vector such that 

<w,t>t/||t||
2
=t/q

’
.  Then we have 

 

Gc =< x, y, z | x
n
 = z

2
 = (zx)

2
 = (yz)

2
 = 1, xy = yx, 

o(y) = ∞ > . 

 

 

 

Proof. From the geometry of C4C8(R) nanotubes and 

previous explanations, the generators of the symmetry 

group are true. One can easily justify the relations between 

generators. 

 

 

3. Conclusion 
 
In this work a mathematical model for C4C8(R) 

nanotubes is given. The lattice of the nanotube is 

introduced as a metric space. Using this metric space, we 

computed the full symmetry group of the nanotube. Our 

model is very useful for computing the distance-based 

invariants of the graph of nanotube. 
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